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ABSTRACT

Cumulative search-evasion games (CSEGs) involve two players, a searcher and an

evader, who move among some finite set of cells. Neither player is aware of the other
player's position during any stage of the game. When the payoff for the game is as-

sumed to be the number of times the searcher and evader occupy the same cell, Eagle
and Washburn proposed two solution techniques: one by fictitious play and the other
by solving equivalent linear programming formulations. However, both have proved to
be time consuming even for moderately sized problems.

This thesis considers two alternate linear programming formulations for CSEGs.
Since both contain a large number of variables and constraints, the linear programming
problems are initially solved with many of the constraints removed. If the solution to
this relaed problem is not a feasible optimal solution, additional constraints are added
and the problem is solved again. This process continues until a feasible optimal solution
is found. The results from a numerical experimentation with various solution techniques

are also presented.
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I. INTRODUCTION

Cumulative search-evasion games (CSEGs) involve two players, a searcher and an

evader, who move among some finite set of cells, C. Neither player is aware of the other

player's position during any stage of the game. Let X, and Y, represent the positions

of the searcher and evader. respectively, at time t. If the cells are numbered from 1 to

n. then X, = i and Y, = j for some ij e { 1,2,...,n} for all t. The payoff of the game, N. is

given by

T

N= 'A(A,. }'.t) (1)

where T is the number of time periods and A(X,. Y. t) is the payoff function. The

searcher wants to choose his strategy so as to maximize the expected payoff, E[N]: the

evader desires to miiiiniize the expected pa:.off. While there are many other suitable

payoff functions, the one of interest is an indicator of the event Xt = Y,. In this case,

the payoff is equal to the average number of times that the two players occupy the same

cell simultaneouslv.

This study assumes that the starting positions for both the searcher and the evader

are specified. In particular. let S, and F, denote the starting locations (cells) of the

searcher and evader, respectively. From one period to the next, both players are allowed

to only mo c to cells which are adjacent to their currently occupied cells. In time period

t. let the sets S(X,.t) and E(Y,.t) denote the cells which are adjacent to X, and Y,. then

X, 1 and Y, must belong to S(X,.t) and E(Yt), respectively. Figure 1 displays a one

dimensional CSEG with four cells. If X,= 3, then X,t must belong to S(X,.t)= {2, 3,

41. In essence, the players are not allowed to "leapfrog" to non-neighboring cells in one

time period. Eagle and Washburn give several applications for CSEGs [Ref. 1].

Note that the objective function in a CSEG is not the probability of detection. In

most search theory, the measure of eflectiveness (.MOE) to be maximized is the expected

probability of detection. This MOE is most often given as L[I - eN], where N is as

defined as above and ,%(X,. ,. t) is interpreted as the detection rate at time t. (See
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Figure 1. One Dimensional CSEG -- Motion Feasibility

Koopman[Ref. 2 ].) Since E[li - e.'] # 1 - e-Ef-' , the CSEG solution cannot be in-

terpreted as a detection probability except when N is very small (Eagle and Washburn

[Ref. 1]).

Most search theory deals with the optimal allocation of a searcher's effort to detect

a target which is not allowed to actively evade. Most approaches (see Stone [Ref. 3])

rely on Bayesian methods for finding optimal search plans. Stone [Ref. 4] also surveys

an extensive literature for finding optimal search allocation where the searcher is un-

constrained and target motion follows a Markov process. Eagle [Ref. 5] and Stewart

[Ref. 6 ] have studied the problem where the searcher is constrained.
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Gal [Ref. 7] and Ruckle [Ref. 8] have considered games in which the target has

been allowed to actively evade, using "time until capture" or "time until first detection"

as the payoff Stewart [Ref. 9] studied optimal search and evasion strategies for a two

cell model under various constraints. Stewart's study assumes a detection rate payol'

function which makes the analytical solution difficult for even the small model consid-

ered. CSEGs are thus an improvement on models such as Stewart's in the sense that

cames with several cells can be considered. The price paid for this is that CSEGs require

a specific, analytically convenient form for the objective function.



I. EAGLE-\WASHBURN FORMULATION

Eagle and Washburn [Ref. 1] offered two methods for solving CSEGs. One method

is the Brown-Robinson method of fictitious play [Ref. 10]. The other approach is for-

mulating the CSEG as a linear prograrmming (LP) problem. Similar to the normal

method of LP solution, there are two linear programming formulations: one for the

searcher and the other for the evader. Both are equivalent in that they are duals of each

other. I lowever, unlike the normal method, where each pure strategy has a decision

variable and a payoff matrix must be computed, this formulation is expressed in terms

of marginal probabilities of the searcher occupying the cells in each time period t. The

main motivation of this formulation is to avoid generating all possible pure strategies for

both the searcher and evader. The number of pure strategies grows exponentiallv as a

function of the length of the game, T, and the number of cells in S(X, t) and L(Y,.t).

For example. for a one dimensional search problem with 20 time periods and S(X,.t) and

E(Y1.t) each containing three cells for each time period, there are 320 pure strategies for

each player.

To formulate the linear programming formulation for the searcher. Lagle and

Washburn define the following:

p(i.t) = the marginal probability that the searcher occupies cell i at time t

u(i.j.t) = the probability that the searcher will visit cell i at time t and cell j at time
t+ I

/(j.t) = the smallest possible payoff accumulated from period t to period T given that
the evader occupies cell j in time period t

S(i.t) = the set of cells in time period t-I from which the searcher can reach cell i in
time period t. That is,

Sx(i.t) = [k e Cii e S(k.t- 1))

1or ieC and t= 2.3 . where S(k,t- 1) is as previously defined. For example, in Figure
lS-( Lt +l 1 {.2}.



Then, the linear progranming problem can be stated as fcllows:

max :(E.1)

subject to

t(S).1) = 1 (2)

_ - uj,,t - 1) + Z u(i,k,) = 0; i c C, 1 = 2,3,...,T- 1 (3)
je S (it) kESki,t)

ZpS,.)+ u(So.k,l)=( (4
kES(S;, I

T .. T- I)+p(i.T)=o: ie C 5)
jE S'(1.7)

- ,,i)1,(i.') - z(A,i + J) + -fji) 0; j e C, k e EU,t). 1 = 1.2..... T- 1 (6)
iEC'

-- ,t(i.k.lip(k.I) + :(i.T) = 0; ie C ('I

i.rt) _ iJ c = 0.1 ... , T- 1 ()

Ilic objective function above corresponds to maximizing the nini1LIM payoff for

the searcher given that the evader starts in cell E. Constraint (2) then restricts the

searcher to start in cell S, . To validate constraint (3). Eagle and Washburn observed

that for ieC and t= 1,2,.T-I,

P(i.) = N- u rt (q)

jE 'W iet)

or. alteriuitivelv



j]E S'=(,-)

Then. constraint (3) essentially enforces the equality of two equivalent expressions, (9)

and (10), for p(i.t). There is also a network interpretation for constraint (3). Figure 2

depicts the network interpretation for a one dimensional CSEG with three cells and three

time periods. The node i,t) in the network represents cell i in the time period t and the

flow on an arc connecting node (it) to (j,t+ 1) is represented by u(i,j.t). Then, constraint

(3) is simply the conservation of flows at each node (i.t). Constraints (4) and (5) repre-

sent the terminal conditions tor p(i.t) for t = I and t = T, respectively.

Based on the definition. zj.t0 can be written as

j.i) = -A~i.j.p(i..+ min z(A.t + 1) (11
i ~E Pc (, .t)

where z(.,T + 1)= 0. Constraint (6) is simply the linear representation of equati )n ( I I.

Similar to constraints (4) and (5). constraint (7) is the terminal condition of equation

(11).

The linear programming formulation for the evader is the dual of the above and is

not presented here. The reader is referred to Eagle and Washburn [Ref. I] for the de-

tails. I lowe% er. it should be pointed out that the above formulation still contains a large

number of decision variables, which in turn contributes to the extensive CPU time re-

quired to solve even a moderately size,l CSEG. %I ost of these variables are u(i.J.t) vari-

ables. One objective ofthis thesis is to model the searcher's problem without these flow

variables.

For the one dimensional CSEG, the formulation contains (3n-2)T flow variables and

nf smallest payoft(z(i.t) variables. (Marginal probability (p(i,t variables can be cal-

culated from u(i.j.t) variables: they are not needed to solve the LP.) The number of

constrain:s needed is approximately (4n-2)TV+ 2n.

The game reaches equilibrium when both searcher and evader margina! probabilities

are uniform over cells 1.2.n. It can be shown that once the p(..t) and q(..t) reach this

distribution, these distributions are optimal from that time onward (Fagle and



- - .. . , u , ,.w....... ..... .... -. - , -,) - ,i t *

u(1,1,1)

u(2,3,2)

t indicates cell i in time period t

Figure 2. Netisork Flol Interpretation of a One Dimensional CSEG

Washburn [Ref. 1]). In order for the game to reach equilibrium, it was found by ex-

periment that T z 1.5n. Thus, the Eagle-Washburn formulation requires on the order

of 6n" variables and constraints.

In the next chapter, two alternate linear programming formulations are considered.

Both formulations contain fewer decision variables and many more constraints than the

Eagle and Washburn formulation. However, the main advantage is the fact that many

7



of the constraints are nonbinding. Thus. the problem size can be controlled by initially

solving the linear program with only a small subset of the constraints and iterativelv

adding new constraints and resolving as necessary until an optimal solution is achieved.



111. METHODOLOGY

lhe La2le and Washburn formulation always produces an exact solution for

,"SLGs. I lowever, as the size of the problem grows, the time to solve the LP grows even

more rapidly, making it impractical for solving large CSEGs. This chapter considers two

alternate 11 formulations based on prelininary work by Washburn and demonstrates

how to solve these formulations in an iterative manner.

To simplify the presentation, only one dimensional CSEGs are considered. Also, it

is assumed that

1. The search area consists of n cells.

2. The game is played for T time periods.

3. The searcher occupies cell I at time 1.

-4. The evader occupies cell n at time I.

5. The searcher and evader are each allowed to move one cell left or right or remain
stationary at each time step of the game, i.e.,

S(i) = E(ij) = {{i- 1i+ I i = 23.....n- I
tit- 1,111 1i= 11

?. METHOD ONE

Let 'lqj.t) be the marginal probability that the evader will be in cell j at time t. Then.

the expected payoll' v, is given by

7'
v=E[.\.] = 7 '.~jtp~~~lt (12)

where p(it) and N are as previously defined. A(i.j,t)= I iff i = j and L[N] denotes the

expected value of N. The searcher wishes to maximize the expected payoff and the

evader wishes to minimize the expected payolf

Given that the marginal probabilities. pi,t), are specified by the searcher, the evader

then wants to find a strategy to mininize the payoff of the game. Let

Y" = { . Y....... Y,, be a fzasible evader path or "track". If v represents the value ofthe



game. then the following must hold for all strategies Y and marginal probability dis-

tributions p( ij).

T 7

,. 7 'VA(i, 1))p(ij) = Z ),.!) (13)
[=I icc 1=1

where the equality follows from the fact that A(i,YN.t)= I iff i= Y,. Based on (13), the

first alternate formulation can be written as

max v

subject to

Ljiiti = 1: 7= .. 14)

v
) _ ' Y,.t) V Y(151

P(i.t)_ < p(.t - 1). k= 1.2,....n. = k,k+ 1.^ t 2,3,....T (16)

t,(i.t) > 0: i 1....nt= 1.2 .....T1:

Constraint (14) ensures that the marginal probability must sum to one for each time

period and constraint (15) enforces the optimality condition expressed by equation (13).

Finallv. constraints (14) and (1(,) guarantee that there exists a corresponding set of fea-

sible u(i.j.t). To illustrate that this is true. consider the CSILG with six cells and let k 2

and 1=4. Then. constraint (16) translates to

p(2.t) + p(3,t) + p(4.t) < p(I t- I) + p(2 t - 1) + ,(3.1 - 1) + p(4.t - 1) + 1(.t- 1)

which simply implies that the probability that the searcher will occupy cells 2, 3 or 4 at

time t must not be larger than the probability that he will occupy cells 1, 2. 3, 4 or 5 at

time t-I. If this condition does not hold. there can not exist a corresponding feasible

'transition" probability. u(i.j.t). In the network interpretation, constraint (14) ensures

that the total "supplNI leaving nodes (i.t- I ) and the total "demand" arriving at nodes (i.t

I(1



for i= 1,2,...,n is equal to one. Constraint (16) ensures that the amount of probability

"shipped" along the arcs cannot exceed the "supply" of probability available.

Even for a moderately sized CSLG. the above formulation contains an extremely

large number of constraints, in particular those which are described in constraints (15)

and (I(,). Thus, it would be prohibitive to generate all the constraints and solve the re-

sulting LP. Instead, the algorithm below initially solves the problem with one strategy

Y= {nn... i.e., the evader remains in cell n for all T time periods, and disregards all
type (16) constraints. Afterward. the violated constraints are added iteratively until all

binding constraints are included in the formulation. The algorithm can be stated as

follows:

Method One Algorithm

Step 0: Set k= 0 and let (L', p'(i.i)) solve the following

L Pto):

subject to

I= = 1.2.. (IS)

T

'(19 )

p(i.t> 0; i = 1,2.... I= 1.2.... 1 (210

Step 1: If ("". (i.t)) is feasible b constraint sets (15 and (10). then (0v.t, (i.1)) i a
solution. Otherwise. go to Step 2.

Step 2: Generate constraint, from the constraint sets (15) and (16) which p(i.t) vio-
lates and add them to problem LP(k) to obtain a new problem LP(k+ 1).

Step 3: Let (v-, - (i~t) ) solve IPk±k+ I). set k=k+ I and go to Step I.

In Step 2. the feasibility of constraint set (16) is tested from level I to level n-2 for every-

time period until an infeasible condition is found or the solution can be declared feasible.

The level refers to the number of cells considered. For example, the level I feasibility test

consists of ensuring that p(i.t) _ p(i- I.t- I ) + p(i.t- I) pi + Lt- I ) for iEC and

t = 2. . ..... , where p((,.) and p(n + 1,.) are delhied to be zero. If this test is violated, a

constraint of type (10) is added to the linear program for every such violation of level I
feasibility tests and the LI is solved. It no violation is found, level 2 feasibility tests are

performed. These tests ensure that p(i.t) + p(i + L.t) < p(i- Lt- I ) + p(i.t- I + p(i i I't- I

11



+ p(i+ 2.t-1) for i= 1.2,...,n-I and t=2.3,...,T, where p(O..) and p(n+ 1..) are defined to

be zero. These tests continue until a feasibility violation is found and the necessary

constraints added or until the solution is found feasible. The number of these con-

straints could potentially grow as large as -n(n + I )T, but only a fraction of these con-

straints are needed.

Then. to test for feasibility for constraint (15), find a track, Y , for the evader such

that the sum of all p(Y',t) over all t is a minimum among all tracks. This can be ac-

complished by solving an appropriate shortest path problem. If

T

1k Y'[.I) < k 121)
1= 1

then constraint type (151 is violated and the constraint

7-

v < ,(.t) (22)
1= 1

must be added.

Method One was altered in two ways to attempt to reduce computation time. One

variation involved eliminating slack constraints. Since each successive LP) is larger than

the previous LIP. the time to solve each LP grows. By eliminating constraints that re-

main slack for several successive IP solutions, the overall size of the lIP is reduced.

The other variation involved starting with a set of path constraints, or type (15)

constraints, in addition to the usual starting constraints. If these path constraints can

be chosen so as to cover the critical paths (path constraints that are tight in the final

solution). this may reduce the number of algorithm iterations necessarx to arrive at the

problcm solution.

B. METHOD TWO

The second method is similar to the first method, except that constraint set (15) is

replaced by the recursive definition of the z(.,.) variables stated in Chapter II. Using the

fact that A(i.j.t) = I ifT i = j, z(..) can be redefined as follows:

z(i.tI = ,(i.t) + rain z(k.t + 1) (2')

12



where z(.. [+ I)= (. Both types of constraints serve the same purpose: to ensure that

the g; me value is equal to the minimum payoff possible for a given p(.,.). lIowever,

cot.straint set (15) was added as needed, while constraints corresponding to equation

(231 are all in the initial LP. The advantage of the method is the fact that equation (23)

produces (3n-2)1 constraints while constraint set (15) contains 3T.

lethod Two Algorithm

Step 0: Let k= 0 and (v pl(i.t)) solve the following
L P(()):

max v

subject to

1, . = 1.2.. (2-4)

= 2 az.1 (25)

it.!) _ :(i.t + 1)-4-pi); i= 1,2.. je E(i.i). = 1,2 .T- 1 (20)

,(i.t) U: i= 1.2., t= 1 ..... T 27)

Step 1: If ". ,r(i.t)) is feasible to constraint set (16). ( , t))isa solution. Other-
wise,. go to Step 2.

Step 2: Find consraints of type (16) which are violated and add them to problem
1. Pi. k) to obtain a new problem LP(k + I).

Step 3: Let (v"-.,-Ci.LI solxe l.Pk+ I . set k= k+ I and go to Step 1.

Notc that the method for tinding violated constraints in Step 2 is as described for

Method One.

Method Two was altered in two ways in an attempt to reduce computation time.

The first variation was the method of eliminating slack constraints as done with NI ethod

One. The second variation made was adding a group of motion feasibility constraints.

i.e., constraint set (16) to LP(O. This variation is similar to the second variation on

Method One. If this group of motion feasibility constraints is chosen so as to cover

those motion feasibility constraints which are tight in the solution. the number of algo-

rithm iterations may be reduced. Ilhe method devised for choosing motion feasibility

constraints for the starting group was drawn from examination of CSEG solutions ob-

tained through the use of Method Two. This method proved very successful and is de-
ccribed below as Method Three.

13



C. METHOD THREE

Method Three is essentially the second variant of Method Two. except that the

performance of Method Three is markedly better because it does not require successive

iterations to arrive at an optimal solution. An examination of the tight motion feasi-

bility constraints in optimal solutions using Method Two reveals that all these motion

feasibility constraints are of the form:

1=1 j=1

All these constraints include cell 1, the left-most cell. These constraints will be referred

to a, left-anchored constraints.

Another observation from previous solutions is that the searcher always rushes from

cell I to cell 0-1 during the first 0-I time periods where t = 0 is the first time period in

which the searcher and evader can c( , ide. When there are n cells. 0 - - ]vhen n

is odd and 0 = 1 I when n is even. I lere [x] denotes the smallest integer m such that

x<m. Since the searcher and evader cannot occupy the same cell during these first 0-1

time periods, A(X,, Y, t) = 0 for t = 1,2...O-I for any pair of searcher and evader strate-

gies (XNA. Thus. no payoff occurs during periods 1 to 0-1 and z(n.l) must be the min-

imum of zi,0) where i= 0.0 + 1...,n. This observation allows for ignoring all those

decision variables from the first 0-1 time periods. ]his reduces the number of variables

and constraints by approximately one-third.

Use of this formulation with left-anchored motion feasibility constraints will solve

CSLGs as large as n = 12. In larger CSEGs, there exists another set of tight motion

feasibility constraints which are anchored on the right-most cell, cell n. For th~se

CSLGs, inclusion of this set of constraints for the last fiew time periods leads to an op-

timal solution. If we let T = the first time period in which the right-anchored motion

14



feasibility constraints are required, then the lT is as follows:

max '

subject to

i1 r=0. 0 + .T (29)
1=1I

z(i.t) (j.zt+ I) + plt.t): t=.O+1.. i0= 1 +......, j c E(ij) (30)

< _ I = + 1 -0.,7 2 - 0....n (31

'4 1

S Vj I. 1 0=O l,0+2..... 1=1.2.- 2 (32)

_p(i.t) < pj.t - 1); t = .r + . =n. - 1 .... 3 (33)

t)i.tJ >; 1=1.2.n, 1= 1,2 ....7 (34)

where z(..-I+ I)= 0. Constraint (29) ensures the marginal probability summed over all

cclls in a time period is equal to one. Constraints (30) and (31) perform the same func-

tion as equation (23). Constraint (32) delineates all levels of left-anchored motion feCa-

sibilitv constraints for time periods of interest. Constraint (33) describes all

riht-anchored motion fcasibility constraints for time periods of interest. The number

of variablcs is 11n1 +l and the number of constraints is on the order of 1-nT. Assum-

in - -- n. there are approximately n2 variables and 4n 2 constraints. This formulation

provides solutions for CSILGs up to at least size n= 30.

15



IV. RESULTS

lethods One and 1 wo were both implemented through the use of a [OR] RAN

interface with I.INDO (Linear Interactive Discrete Optimizer). Method Three and the

Lagle-Washburn model were implemented in GAMS (General and Algebraic Model

Solver) using . INOS (M odular In-Core Nonlinear Solver). All methods were executed

on an IBI 3033AP mainframe computer at the Naval Postgraduate School, Monterey,

Calilbrnia.

A. NIETIIOD COMPARISON

Method One and its variants performed considerably worse than the Eagle-

Washburn model for n > S. Figure 3 shows computation time in CPU seconds versus

(SL(i site for both methods. Method Two is slightly faster than Method One. but does

not perlormi a well as the Lale-Washburn model for n 10. In [igure 4, 2-1 indicates

the performance of Method Two and 2-2 indicates the performance of the .Method Two

variant with slack constraint elimination.

Using Methods One and Two for solving larger CSEGs results in excessive compu-

tation time due to the increased number of l.Ps that must be solved. The strategy of

solving several smaller LPs instead of one large LP fails because of the large number of

small l-Ps that must be solved to arrive at the problem solution.

16
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MIethod 1 hrec proved to dom-inate the Eagle-Washburn model ill all cases tested

(n : 30). Iluire 5 shows computation times For various Si7C CSFG soIlutis under

both models. Ni ethod Three allowed for solution of' larecr (CSl'I G than wvas flrevioua\!



economical using the Lag-le-Washiburn model. Solutions of these larger CSLGs have

simil ar structure to smialler C'S[G solutions. wh-ile showing somec smnall diffecrences.
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Figure 5. Computation Time of Method Three vs. Eagle-Washiburn Method



B. CSEG SOLUTION STRUCTURE

Our concentration has -een on finding the optimal searcher and evader marginal

probabilities from the start of the game until the marginal probabilities reach equilib-

rium. 1lhe strategies of' both players have been described previously by Eagle and

Washburn [RefL 1] for one-dimensional CSEGs as large as n= 12. Strategies in the

larger games do not ditfer greatly from those in smaller games.

One pure strategy that might he advantageous to the evader includes stavin: in cell

n unti the searcher can reach that cell. If the game were played for less than n time

periods, this would be the optimal strategy for the evader, since it would ensure a 7ero

payoff. lowever. for longer games, this strategy is not optimal because of the large

pax off the searcher can force when t > n. This strategy of waiting is part of a larger
group of strateies that can be called "wait-and-run" strategies. The evader stays in cell

n. or waits, for k time periods, where k=(1.2 ... After he has waited k time periods.

he moves to th, left at top speed, one cell per time period, until reaching the left-most

cc IIs.

Figures 6 and 7 show that the .icr mixed strategy consists of several 'wait-and-

run' pure strategies. If we interpret the probabilities as being parts of a large force, such

as soldiers in an army. we can explain the results as follows. Note, in Figure 7. how 36

units break oTilimmedjately from the main force of ()O units in the second time period.

These 36 units continue to move left at the rate of one cell per time period until reaching

cell I at tim 2(). This strategy corresponds to waiting zero time periods before runnine.

Other "waiit-alld-run'" s'1 atedies are used. In each successive period, the size of'the force

which breaks off from the main force in cell n increaes. A large portion of the cx aders

forc reermains in cell n thro ugh the time period in which the searcher first arrivels in cell

n-I. At this point, the eader disperses this force from cell n as quicki% as is feasible over

the next few time periods. See ligure S for details of this stratcgy on an e\pandcd scale.
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CELLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10001

2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 9641

3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 36 928

4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 36 36 892

5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 36 36 36 856

6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 36 36 36 37 819

7 10 0 0 0 0 0 0 0 0 0 0 0 0 36 36 36 36 37 37 782

8 0 0 0 0 0 0 0 0 0 0 0 0 36 3636 3 37 37 39 743

9 0 0 0 0 0 0 0 0 0 0 0 36 36 36 36 37 37 39 3 9 704

10 0 0 0 0 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 663

11 0 0 0 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 41 622

12 0 0 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 41 44 578

13 0 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 41 44 44 535

14 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 485

T 15 0 0 0 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 49 436

1 16 0 0 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 4 9 54 38

M 17 0 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 329 1

E 18 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 121 208

19 0 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 60 60 208

20 1 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 60 60 104 104

21 1 48 48 48 37 37 39 39 41 41 44 44 49 49 54 54 60 60 69 69 69

Z2 1 54 54 54 54 39 39 41 41 44 44 49 49 54 54 60 60 5Z 52 52 52

23 1 59 59 59 59 59 41 41 44 44 49 49 54 54 60 60 42 42 42 42 42

24 1 63 63 63 63 63 63 44 44 49 49 54 54 60 60 35 35 35 35 35 35

ZS 66 66 66 66 66 66 66 49 49 54 54 37 37 37 37 37 37 37 37 37

26 78 78 78 78 78 78 49 49 39 39 36 36 36 36 36 36 36 36 36 36

27 68 68 68 68 68 68 68 45 45 39 39 40 40 40 40 40 40 40 40 40

28 59 59 59 59 59 59 59 59 45 45 44 44 44 44 44 44 44 44 44 44

29 53 53 53 53 53 53 53 53 53 48 48 48 48 48 48 48 48 48 48 48

30 47 47 47 47 47 47 47 47 47 47 53 53 53 53 53 53 53 53 53 53

31 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Figure 7. Ebader Marginal Probabilities (xlOOO) for 20-Cell CSEG.
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and then flattens out. Since both players can have forces in all cells at this point, the

evader essentially disperses his forces to reach a uniform distribution over all cells.

Instead of using the individual soldiers interpretation, the explanation can also be

made in terms of the probability of choosing a pure strategy from the optimal mixed

strategy. The evader chooses from a number of "wait-and-run" strategies. It is more

likely that he will wait for long periods of time before running than running early in the

game. After reaching the left-most cells, it appears the evader's motion becomes more

random as he spreads out towards a uniform distribution.

The searcher begins the game by rushing, or moving right at top speed, one cell per

time period. Il s optimal strategy always consists of rushing over the first 0-I periods

where 0 = the first time period in which the searcher and evader may occupy tile same

cell. Consider the five cell CSEG where the searcher begins in cell I and the evader be-

gins in cell 5. Two time periods later. t = 3. the searcher could travel as far right as cell

3. while the evader could travel as far left as cell 3. Thus, for the five cell CSLG. 0= 3.

This first possible meeting point is cell when n is odd and cell -L--+I when n is

even. The searcher gains nothing by stalling during these first time periods: for every

time period he waits, he extends the number of zero payoffs he will receive.

During some time period (0 for CSEGs where n is even, 0 + 1 for CSLGs where n

is odd), the evader could for the first time be in a cell to the left of the searcher. For

example, consider the six cell CSEG. At time 4, the searcher could be as far right as cell

4. the evader as fIar left as cell 3. lfthe players occupy those cells when t = 4. then during

time 3. the searcher and evader were in cells 3 and 4. respectively. 1 lhus. at time 4. the

searcher must split his forces between cells 3 and 4 to ensure that the evader cannot pass

by without coincidence. This split of searcher forces arises in all CSLGs.

1o return to using the analogy of individual soldier movement, after this initial split

is made. the majority of the searcher's forces continue rushing towards cell n. while small

forces split fiom this majority at every time step. See Figures 9 and 10. These small

forces travel back towards cell 1, much as the evader's "wait-and-run" forces do. These

small fiactions of the searcher's forces make sure that the "wait-and-run" forces of the

evader do not break through without paying some penalty. As with tie evader's "wait-

and-run" forces, the searcher's small split-off groups increa!.e in siue as the searcher nears

cell n. Like the evader, once the searcher reaches cell n, he also disperses this main force

as quickly as feasible. The forces then tend to imo1 e towards the uniform distributio'i.

See I icure II for an expanded view of the searcher's strategy for the final time periods.
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CELLS

I Z 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ZO

.... 100....0...0......0...0...0..0...0..0...0...0..0...0...0..0...0...0..0......

1 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 u 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 5000 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 Soo Soo 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 22 10 491 477 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 10 22 0 13 477 477 0 0 0 0 0 0 0

14 0 0 0 0 0 0 10 9 13 13 19 13 470 452 0 0 0 0 0 0

T 15 0 0 0 0 0 10 9 ] 13 19 13 19 22 441 441 0 0 0 0 0

I 16 0 0 0 0 10 9 13 13 15 17 19 22 4Z 10 415 415 0 0 0 0

11 17 0 0 0 10 5 15 15 15 17 19 22 24 28 33 33 382 382 0 0 0

E 18 0 0 10 5 15 15 15 17 19 ZZ 24 28 33 33 41 41 34Z 341 0 0

19 0 10 5 15 15 15 17 19 22 24 28 33 33 41 41 52 52 290 290 0

20 1 0 15 15 15 15 17 19 22 24 Z8 33 33 41 41 52 52 84 552ZO ZZO

21I 15 1S 15 15 17 19 22 24 28 33 33 41 41 5Z 52 66 73 147 147 147

22 19 19 19 19 19 ZZ Z4 28 33 33 41 41 5Z 52 66 73 110 110 110 110

23 24 24 24 24 24 24 28 33 33 41 41 52 52 66 73 88 88 88 88 88

24 :28 28 28 28 28 28 33 33 41 41 5Z 52 66 73 73 73 73 73 73 73

25 34 34 34 34 34 34 34 41 41 52 52 64 6'. 64 64 64 64 64 64 64

26 39 39 39 39 39 39 41 41 52 52 58 58 58 58 58 58 58 58 58 58

27 45 45 45 45 45 45 45 52 52 58 58 52 52 52 52 52 52 52 52 5Z

28 53 53 53 53 53 53 53 53 58 58 46 46 46 46 46 46 46 46 46 46

29 56 56 56 56 56 56 56 56 56 45 45 45 45 45 45 45 45 45 45 45

30 I50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

31 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Figure 10. Searcher Marginal Probahilities (xiO00) for 20-Cell CSEG.
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Most often, he will continue to rush towards cell n. Sometimes. with a small probability,

he will turn back and rush towards cell 1. At each time step, the searcher makes a de-

cision on whether to reverse motion; each time the probability of reversing direction in-

creases. Once the searcher has reached cell n (ifhe has chosen this strategy), his strategy

is similar to the evader as both spread towards a uniform distribution over all cells.

Another striking point of the optimal solutions is the tendency of neighboring p(i,t)

and q(i.t) values to be equal. These groups of equal value conic most often in pairs;

towards the end of the game, they come in larger groups. This is most easily seen in

Ficures 7 and 10, the tabular displays of searcher and evader probability distributions

for the 20-cell CSEG. Although there are exceptions. these exceptions probably result

from arriving at an alternate optimal solution. In working with small CSIGs that ex-

hibit this exception, adding additional constraints to force equality among ncighbors

result, in an alternate optimal solution.



V. CONCLUSIONS AND RECOIMENDATIONS

A. CONCLUSIONS

The formulation of Methods One and Two was intended to reduce computation

time in two ways:

1. Reducing the number of decision variables by using marginal probability variables
(p( i.t )) instead of probability flow variables (u(i.j.t)).

2. Reducing the work required to solve the game by reducing the number of con-
straints.

'he switch to marginal1 probability variables reduces the number of variables needed to

dcine the searchers strategy by two-thirds for the one-dimensional came. A higher

faIctorwould apply in the two-dimensional game. I owever, the iterative method of se-

lecting constraints for successive I.P solutions proved to drastically increase the compu-

tation time necc,sar\ to solve larger canes.

Inspection ofthe results obtained from various si7es of CSEGs solved with Methods

One and Two led to the formulation ofNethod Three. With Method Three. computa-

tion time was further reduced by:

I. Iliminatin decision variables for those time periods the searcher and evader can-
not coincide.

2. t sinL those feasibility constirants of type (16) which contain p( I.t) for each time
period.

3. Sl nin thoe 1eaqibilltv constraints of t\ pe 1 Iwhich contain p(n.t) for the final few
time pcriod,.

E'lliiinating the first few time periods in the one-dimensional CSEG reduces the number

of ' ariables I) approximately one-third. The number of constraints is also reduced by

one-third.

Method Three proves to be a faster solution method than the formulation of Eagle

and Washburn. The use of just left- and riehit-anchorcd constraints for motion feasibil-

ity constraints is effective for n < 11).

B. RECOMMENDATIONS

The time required to solve CSLGs on the order of n = 30 still remains very large even

with the reduction achieved with Method Three. Further reduction may be possible

through the elimination of more variables or constraints,

2q



In Methods Two and Three, all type (26) constraints are used. It may be possible

to identif\ and eliminate those constraints which are always slack. Previously mentioned

was the tendency of neighboring p(i.t) and q(i,t) values to be equal. The number of

variables may be further reduced if the game can be modeled using pairs or groups of

cells as decision variables. Extcnsion of Model Three to the two-dimensional game

should be attempted. The two dimensional CSEG would more closely model the real

aspects of physical search than the one dimensional game. The solutions to CSEGs are

very structured and there may be more ways of exploiting their characteristics to solve

larger games more quickly.
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APPENDIX GAMS PROGRAM OF METHOD THREE

$TITLE One-dimensional CSEG written by LT B.P. Bothwell March 1990

$ONTEXT

This model uses the LP presented as Method Three. It has been

proven to solve CSEGs up to a size of n=30. The dimensions of the set I

(cells) is equal to n. The dimension of the set T (time) is n+1 where

t=FIRST, FIRST+l,...,INT(l.5n)+l where FIRST = the first time period in

which the searcher and evader may first coincide. The model only

requires the motion feasibility constraints of level n-2 and lower. For

example, if n=12, it is only necessary to include FEASI through FEASIO

and RFEASI through RFEAS10. If it is desired to solve a CSEG of size

n>30, additional FEAS and RFEAS constraints must be added. The program

displays searcher and evader marginal probabilities, game values, and

minimum and maximum possible payoff (z,ze) values.

$OFFTEXT

$OFFSYMXREF OFFSYMLIST OFFUELLIST OFFUELXREF

OPTIONS LIMROW=O,LIMCOL=O,SOLPRINT=OFF,RESLIM=3000,ITERLIM=12000

OPTION LP=MINOSS;

SETS

I cells /Cl*C12/

T time periods /T7T*T9/;

ALIAS (I,J);

PARAMETERS

FIRST first non-trivial time period

ULTRA first time period for right-handed constraints

$ONTEXT

FIRST must be set to the first time period in which the searcher and

evader can coincide.

ULTRA is the first time period in which right-anchored constraints

are used. It is currently set to write these constraints for the last

four time periods.

$OFFTEXT
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FIRST=7;

ULTRA=CARD(T)+FIRST-4;

POSITIVE VARIABLES

P(I,T) searcher marginal distn in cell i at time t

Z(I,T) min value obtainable from t to T given evader in i at t;

$ONTEXT

P(i,t) is fixed at zero if it is infeasible for the searcher

to reach that cell

$OFFTEXT

P. FX(I,T)$(ORD(I) GT ORD(T)+FIRST-I) = 0;

VARIABLE

V game value;

$ONTEXT

Equation description

GAMEVAL constraints ensure v < z(i,t) for i > FIRST-1 and t = FIRST

DIST* constraints ensure p(l,t)+p(2,t)+...+p(n,t)=l for t>FIRST

NET* constraints ensure z(i,t) < z(j,t+l) + p(i,t) for i in C,

j in E(i,t) and t=FIRST,...,CARD(T)-l

FEASa constraints ensure p(l,t)+...+p(a,t) < p(l,t-l)+...+p(a+l,t-l)

for a=l,...,n-2 and t > FIRST+l

RFEASa constraints ensure p(n,t)+...+p(n+l-a,t) < p(n,t-l)+...+p(n-a,t-l)

for a=l,...,n-2 and t > FIRST+I

$OFFTEXT

EQUATIONS

GAMEVAL(I,T) game value constraints

DISTONE(T) inequality distn constraints

DISTTWO(T) equality distn constraint-final time period

NETL(I,T) intermediate network constraint type I

NETE(I,T) intermediate network constraint type e

NETM(I,T) intermediate network constraint type m

FEASl(T) feasibility constraints for searcher marginals

RFEAS1(T)

FEAS2(T)
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RFEAS2(T)

FEAS3(T)

RFEAS3(T)

FEA S4 (T)

RFEAS4( T)

FEAS5(T)

RFEAS5 (T)

FEAS6( T)

RFEAS6(T)

FEAS 7(T)

RFEAS7(T)

FEAS 8(T)

RFEASS(T)

PEAS 9(T)

RFEAS9(T)

FEASIO(T)

RFEAS1O(T)

FEAS11(T)

RFEAS 11 (T)

FEAS 12(T)

RPEASI12(T)

FEAS 13 (T)

RFEAS13(T)

FEAS 14(T)

RFEAS14(T)

FEAS15(T)

RFEAS15(T)

FEAS 16(T)

RFEAS16(T)

PEAS 17(T)

RFEAS17(T)

FEAS18(T)

RFEAS18(T);

$ ONTEXT



FEAS19(T)

RFEAS19(T)

FEAS20(T)

RFEAS290(T)

FEAS2 1(T)

RFEAS21(T)

FEAS22(T)

RFEAS22(T)

FEAS23(T)

RFEAS23(T)

FEA S24 (T)

RFEAS24(T)

FEAS25(T)

RFEAS25(T)

FEAS26 ,T)

RFEAS26(T)

FEAS27(T)

RFEAS27(T)

FEAS28(T)

RFEAS28(T)

$OF FTE NT

GA0EVAL(I,T)S((ORD(l) GE FIRST-i) AND (ORD(T) EQ 1))..

V =L= Z(I,T);

DISTONE(T)$(ORD(T) LT CARD(T))..

SUM(I,P(I,T)) =L- 100;

DIST7-WO(T)$(ORD(T) EQ CARD(T))..

SU,'I(I,P(I,T)) =E= 100

NETL(I,T)$(ORD(I) GT 1)..

Z(I,T) =L= Z(I-1,T+l) + P(I,1 ')

NETE(I,T)..

Z(I,T) =L Z(I,T+1) + P(I,T)

NETM(I,T)$(ORD(I) LT GARD(I))..

Z(I,T) =L= Z(T+1,T+1) + P(I,T)

FEAS1(T)S((ORD(T) GE 2) AND (ORD(T) LT GARD(T)))..
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SUMk(I$(ORD(I) EQ 1),P(I,T)) =L= SUM(J$(ORD(J) LE 2), P(J,T-1))

FEAS2(T)S((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

FST ($(ORD() GE 2)AND(ORT)) =LT CAI($RD))L,PJ,-

FEAS34(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

FS($(ORD() GE 2)AND(ORT)) =L CA(JRD))L,PJ,-

FEAS6(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

FEAS5(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(T$(ORD(I) LE 7),P(I,T)) =L= SUM(J$(ORD(J) LE 6)), P(,T-1))

FEAS6(T)S((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(I$((ORD(I) LE 9)),P(I,T)) =L= SUM(lJ$((ORD(J) LE 1)),P(J,T-1)) ;

FEAS1(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUN(1$((OR\D(I) LE 1)),P(I,T)) =L= SUM(J$((ORD(J) LE 1)),P(J,T-1)) ;

FEAS1(T)$((ORD(T) GE 2) AND (ORD(T) LT CAD(T)))..

FEAS1(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SU'M(IS((ORD(I) LE 1)),P(I,T)) =L SU(J((ORD(J) LE 1)),P(J,T-1));

FEAS13(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(I$((ORD(T) LE 13)),P(I,T)) =L= SUM(J$((ORD(J) LE 14)),P(J,T-1));

FEAS14(T)S((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUN,(I$((ORD(I) LE 14D),P(I,T)) =L= SUN(JS((ORD(J) LE 12)),P(J,T-1));

FEAS12(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SU>1(I$((OR<D(I) LE 12)),P(I,T)) =L= SCN(J$((ORD(J) LE 16)),P(J,T-1));

FEAS13(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

FS1()$((ORD(T) GE 2) AND(ORDT) =LT GARD(T))).. )LE1))P(,-

FEAS14(T)S((ORD(T) GE 2) AND (GRD(T) LT CARD(T)))..



$ ONTEXT

FEAS19(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(IS((ORD(I) LE 19)),P(I,T)) =L= SUM(J$((ORD(J) LE 20)),P(J,T-1));

FEAS2C(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(I$((ORD(I) LE 20)),,P(I,T)) =L SUM(J$((ORD(J) LE 21)),P(J,T-1));

FEAS1"1(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(I$((OKD(I) LE 21)),P(I,T)) =L= SUII(J$((ORD(J) LE 22)),P(J,T-1));

FEAS2-2(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(I$((ORD(I) LE 22)),P(I,T)) =L= SUM(J$((ORD(J) LE 23)),P(J,T-1));

FEAS23(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

FEAS24(T)S((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SU'I(I$((ORD(I) LB 24)),P(I,T)) =L= SUM(J$((ORD(J) LE 25)),P(J,T-1));

FEAS25(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM1(JS((ORD(T) LB 25)),P(I,T)) =L SUII(J$((ORD(J) LB 26)),P(J,T-1));

FEAS26(T)S((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(IS((ORD(I) LB 26)),P(I,T)) =L= SUM(J$((ORD(J) LB 27)),P(J,T-1));

FEAS27(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SU21(I$((ORD(I) LE 27)),P(I,T)) =L= SUM(J$((ORD(J) LB 28)),P(J,T-1));

FEAS28f(T)$((ORD(T) GE 2) AND (ORD(T) LT CARD(T)))..

SUM(IS(ORD(I) LB 28)),P(I,T)) =L= SUN(J$((ORD(J) LB 29)),P(J,T-1));

S OFFTEXT

RFEAS1(T)$(ORD(T) GE ULTRA)..

S171(IS(ORD(I) EQ CARD(I)),P(I,T)) =L=

SU,'1(J$(ORD(J) GE CARD(J)-1),P(J,T-1));

RFEASZ(T)S(.ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-1),P(I,T)) =L=

SU>I(J$(ORD(J) GE GARD(J)-2),P(J,T-1));

R'EAS3('r)s(ORD(T) GE ULTRA)..

SUMI(I$(ORD(I) GE CARD(I)-2),P(I,T)) =L--

SULNI(JS(ORD(J) GE CARD(J)-3),P(J,T-1));

RFEAS4(T)S(ORD(T) GE ULTRA)..

SUM1(I$(ORD(I) GE CARD(I)-3),P(I,T)) =L--
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SUM(J$(ORD(J) GE CARD(J)-4),P(J,T-1))

RFEAS5(T)$(ORD(T) GE ULTRA).,

SUM(I$(ORD(I) GE CARD(I)-4),P(I,T)) =L

SUN(J$(ORD(J) GE CARD(J)-5),P(J,T-1));

RFEAS6(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-5),P(I,T)) =L

SUM(J$(ORD(J) GE GARD(J)-6),P(J,T-1));

RFEAS7(T)$'ORD(T) GE ULTRA)..

SUM(I.$(ORD(I) GE CARD(I)-6),P(I,T)) =L

SU>I(J$(ORD(J) GE CARD(J)-7),P(J,T-1));

RFEAS8(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-7),P(I,T)) =L=

SUMI(JS(ORD(J) GE CARD(J)-8),P(J,T-1));

RFEAS9(T)S(ORD(lT) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-8),P(I,T)) =L=

SUM,(JS(ORD(J) GE CARD(J)-9),P(J,T-1))

RFEASIO(T)$(ORD(T) GE ULTRA)..

SUM(TS(ORD(I) GE CARD(I)-9),P(I,T)) =L=

SU'1(JS(ORD(J) GE CARD(J)-1O),P(J,T-1))

RFEAS11(T)S(ORD(T) GE ULTRA)..

SU"M(IS(ORD(I) GE CARD(I)-1O),P(I,T)) =L

SUM(J$(ORD(J) GE CARD(J)-1J.),P(J,T-1))

RFEAS12(T)$(ORD(T) GE ULTRA)..

SUM(IS(ORD(I) GE CARD(I)-11),P(I,T)) =L=

SU\M(JS(QRD(J) GE CARD(J)-12),P(J,T-1))

RFEAS13(T)S(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-12),P(I,T)) =L

SUM(J$(ORD(J) GE CARD(J)-13),P(J,T-1))

RFEAS14(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(T) GE CARD(I)-13),P(I,T)) =L

SUM(J$(ORD(J) GE GARDXJ)-14),P(J,T-1))

RFEAS15(T)$(ORD(T) GE ULTRA)..

SUM,(I$(ORD(I) GE CARD(I)-14),P(I,T)) =L=
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SUM(J$(ORD(J) GE GARD(J)-15),P(J,T-1))

RFEAS16(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE GARD(I)-15),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-16),P(J,T-1));

RFEAS17(T)$(ORD(T) GE ULTRA)..

SUW(I$(ORD(I) GE CARD(I)-16),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-17),P(J,T-1));

RFEAS18(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-17),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-18),P(J,T-1));

$ONTEXT

RFEAS19(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-18),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-19),P(J,T-1))

RFEAS2O(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-19),P(I,T)) =L=

SUM(J$(ORD(J) GE GARD(J)-20),P(J,T-1));

RFEAS21(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-20),P(I,T)) =I,

SUM(J$(ORD(J) GE CARD(J)-21),P(J,T-1));

RFEAS22(T)S(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-21),P(I,T)) =L-

SUM(J$(QRD(J) GE GARD(J)-22),P(J,T-1));

RFEAS23(T)S(ORD(T) GE ULTRA)..

SUM(l$(ORD(I) GE CARD(I)-22),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-23),P(J,T-1))

RPEAS24(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-23),P(I,T)) =L-

SUN(J$(ORD(J) GE GARD(J)-24),P(J,T-1))

RFEAS25(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-24),P(I,T)) =L=-

SUM(JS(ORD(J) GE CARD(J)-25),P(J,T-1))

RFEAS26(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-25),P(I,T)) =L=



SUM(J$(ORD(J) GE CARD(J)-26),P(J,T-l))

RFEAS2?7(T)$(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-26),P(I,T)) =L=

SUMI(JS(ORD(J) GE CARD(J)-27),P(J,T-l))

RFEAS28(T)S(ORD(T) GE ULTRA)..

SUM(I$(ORD(I) GE CARD(I)-27),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-28),P(J,T-l))

$OFFTEXT

MODEL CSEG /ALL/

SOLVE CSEG USING LP MAXIMIZING V

S ONTEXT

DISPLAY statements show values of p, v and z in LP solution

SOFFTEXT

DISPLAY P.L

DISPLAY %7.L

DISPLAY Z.L

$OCNTEXT

q(i,t) solution comes from dual - network equation slack values

$OF FTE\T

PA RAY-IETER

Q(I,T) evader marginals;

Q(I,T) = 100*(NETL.Ml(I,T)+NETE.M(I,T)+NETMl.M(I,T));

DISPLAY Q

$ ONTEXT

u(i,t) computes the maximum score obtainable to the searcher if

he is in cell i and evader marginals are given

$OFFTEXT

PARAMETER

ZE(I,T) longest path by searcher;

ALIAS (T,TP);

ZE(I,T)$(ORD(T) EQ l)=SUMI(TP$(ORD(TP) EQ GARD(T)),Q(I,TP))

LOOP(T$(ORD(T) LT CARD(T)),ZE(I,T+1)=SUMl(TP$(ORD(TP)+ORD(T) EQ GARD(T)),

Q(I,TP))+MIAX(ZE(I-1,T),ZE(l,T),ZE(1+1,T)));

DISPLAY ZE;
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